
Nonlinear Analysis: Real World Applications 11 (2010) 2465–2471

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

On locating all roots of systems of nonlinear equations inside bounded
domain using global optimization methods
I.G. Tsoulos a,∗, Athanassios Stavrakoudis b
a Department of Computer Science, University of Ioannina, 45110 Ioannina, Greece
b Department of Economics, University of Ioannina, 45110 Ioannina, Greece

a r t i c l e i n f o

Article history:
Received 14 April 2008
Accepted 4 August 2009

Keywords:
Nonlinear equations
Global optimization
Stopping rules
Clustering

a b s t r a c t

A novel method of locating all real roots of systems of nonlinear equations is presented
here. The root finding problem is transformed to optimization problem, enabling the
application of global optimization methods. Among many methods that exist in global
optimization literature, Multistart and Minfinder are applied here because of their ability
to locate not only the global minimum but also all local minima of the objective function.
This procedure enables to locate all the possible roots of the system. Various test cases
have been examined in order to validate the proposed procedure. This methodology does
not make use of a priori knowledge of the number of the existing roots in the samemanner
as the corresponding global optimizationmethodology which does not make use of a priori
knowledge of the existed number of local minima. Application of the new methodology
resulted in finding all the roots in all test cases. The proposed methodology is general
enough to be applied in any root finding problem.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Many applied problems are reduced to solving systems of nonlinear equations, which is one of themost basic problems in
mathematics. This task has applications in scientific fields such as physics [1–3], chemistry [4], economics [5] etc. There are
several methods proposed in the literature to tackle this problem, however a complete solution has not yet been achieved.
Recent paradigms include cases such as subdivision methods [6,8], exclusion test methods [9] Newton method [10–13,7],
Trust region methods [14,15], Tensor methods [16,17], methods that utilize evolutionary algorithms [18,19] etc. Recently,
Hirsch et al. have published another work [21] which estimates all the roots of systems of nonlinear equations by gradually
adapting the minimization problem as roots are found.
A system of nonlinear equations may be defined as follows:

f (x) =


f1(x)
f2(x)
...
fn(x)

 (1)

with x ∈ S =
[
a1,b1

]
× [a2, b2] . . . [an, bn] ⊂ Rn and f1, f2, . . . , fn being nonlinear continuous functions, such that f : S → R.

Some of the equations can be linear but at least one of them cannot. A point x ∈ S is called root of the system if every
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equation of the system is zero:

f1(x) = 0
f2(x) = 0
...

fn(x) = 0. (2)

This paper focuses on locating all the roots of systems of nonlinear equations using global optimization methods such as
Multistart andMinfinder [20]. The original systemof equations is transformed to an optimization problem and subsequently
the global optimization methods attempt to estimate all the local minima of the optimization problem. This procedure
enables the finding of all possible roots of the system.
Using optimizationmethods in order to solve a system of nonlinear equations has been also used successfully in the past.

However, most of these approaches used local and deterministic optimization methodology. Taking into account the recent
advantages in the area of stochastic and global optimization, we propose now a direct application of these methodologies
in order to suggest a more general solution of the problem. A novel advantage of our proposed method is that it enables the
application to any test case, since it does not make use of a priori knowledge of the number of roots in the system. Moreover,
the incorporation of newly proposed fast global optimization methods [20] enables the location of all real roots of a system
in extremely short CPU times. Also, the combination of global optimization methods with local optimization techniques
increases the effectiveness of our approach.
The rest of this article is organized as follows: in Section 2 the methods Multistart and Minfinder are briefly discussed,

in Section 3 the test problems as well as the results from the application of the methods to them are presented and finally
in Section 4 some conclusions are derived and a discussion about future work is made.

2. Method description

2.1. Problem formulation

In order to use global optimization methods, the system of Eq. (2) is transformed to an optimization problem. This is
achieved by using the auxiliary function:

F(x) =
n∑
i=1

f 2i (x). (3)

Squares are preferred from absolute values, because of their ability to provide analytical derivatives. By definition, F(x) ≥ 0.
Thus, for the globalminimum x∗ of F(x) it holds F (x∗) ≥ 0. If ∃x∗ : F (x∗) = 0, then it implies that x∗ is a globalminimumand
subsequently f1 (x∗) = f2 (x∗) = · · · = fn (x∗) = 0 and thus x∗ is a root for the corresponding system of equations. Finding
all the x∗ such that F (x∗) = 0 corresponds to locating all the roots of the system. Of course, some of the local minima of F(x)
could have function value greater than zero. Such solutions are discarded from the algorithm, since they do not correspond
to roots of the system.
The most used global optimization methods to locate all the local minima of F(x) is the Multistart and the Minfinder

methods described below.

2.2. Multistart

The Multistart method is the simplest global optimization method and it is the base for many others more efficient
methods such as clustering methods. The main steps of any Multistart-like method are presented in Algorithm 1. Even
though the Multistart method is quite simple is also quite ineffective when bad stopping rules are used and so a good
stopping rule should be used that is effective and economical, i.e. locating all the local minima of the function using the least
number of function evaluations. Lagaris and Tsoulos have proposed [22] three stopping rules for the Multistart method that
are based on asymptotic considerations. The first stopping rule is called Double-Box and it uses a Monte Carlo based model
that enables the determination of the coverage of the bounded search domain. The second method is called Observables
stopping rule and it is based on a comparison between the expectation values of observables quantities to the actually
measured ones. The third rule is called ExpectedMinimizers and is based on estimating the expected number of localminima
in the specified domain. These stopping rules were used in our experiments for the location of the roots.

2.3. Minfinder

The second global optimization method used was the Minfinder method. This method is a new clustering algorithm that
aims to locate all the local minima of a multidimensional continuous and differentiable function inside a bounded domain.
The method utilizes the Double-Box stopping rule mentioned before and its main steps are presented in Algorithm 2. In this
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Algorithm 1 The main steps of the Multistart method
1. Set X∗ = ∅
2. Set the number of samples N .
3. Set iter = 0
4. For i = 1..N
(a) Sample a point x in the feasible region of the objective function.
(b) Apply a deterministic local procedure L(x) yielding a local minimum x∗.
(c) If x∗ /∈ X∗ then X∗ = X∗ ∪ x∗.

5. End For
6. Set iter = iter+ 1
7. If the termination criteria hold, then terminate else goto step 3.

Algorithm 2 The main steps of the Minfinder global optimization procedure
1. Initialization step:
(a) Set the number of samples N
(b) Set X∗ = ∅ (local minimizers).

2. Sampling step:
(a) S = ∅
(b) For i = 1..N

i. Sample a point x in the feasible region
ii. Check if x is valid and if so add the sample to S.

(c) End for
3. Main step:
(a) For ∀ x ∈ S

i. If x is valid then start the deterministic local search procedure L(x) ast used also in algorithm 1, yielding a local
minimum x∗. If x /∈ X∗ then X∗ = X∗ ∪ x∗

(b) End For
4. Decision step: If the Double-box stopping rule holds then terminate else Goto Sampling step.

algorithm a point is considered to be valid if it is not too close to some already located minimum or another sample in S.
The closeness with a local minimum or some other sample is guided through the so-called typical distance and the gradient
criterion. Further information about the algorithm can be found in [20].

3. Experiments

3.1. Test problems

Eight test cases have been examinedhere alongwith their variations. These test cases arewell established in the literature
and correspond to diverse scientific fields.

Effati–Grosan—problem 1
This problem is considered also in the papers of Effati [23] and Grosan [24]. The system of equations is defined as follows:

f1 (x1, x2) = cos (2x1)− cos (2x2)− 0.4
f2 (x1, x2) = 2 (x2 − x1)+ sin (2x2)− sin (2x1)− 1.2 (4)

where−a ≤ xi ≤ awith a = 2 or a = 10 or a = 100. The total number of roots is unspecified in the literature.

Effati–Grosan—problem 2
This is another problem considered by Effati and Grosan and it is given by the following equations:

f1 (x1, x2) = ex1 + x1x2 − 1
f2 (x1, x2) = sin (x1x2)+ x1 + x2 − 1 (5)

where−a ≤ xi ≤ awith a = 2 or a = 10 or a = 100. The total number of roots is unspecified in the literature.
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Table 1
The values for the angles ψi, φi, i = 0, 1, 2, 3 for the steering problem.

i ψi φi

0 1.3954170041747090114 1.7461756494150842271
1 1.7444828545735749268 2.0364691127919609051
2 2.0656234369405315689 2.2390977868265978920
3 2.4600678478912500533 2.4600678409809344550

Reactor problem
This problem deals with a model of two continuous nonadiabatic stirred tank reactors and it is described in [25–27]. The

problem is given by the following equations:

f1 (x1, x2) = (1− R)
(

D
10 (1+ β1)

− x1

)
exp

(
10x1
1+ 10x1

γ

)
− x1

f2 (x1, x2) = x1 − (1+ β2) x2 + (1− R)
(
D
10
− β1x1 − (1+ β2) x2

)
exp

(
10x2
1+ 10x2

γ

)
(6)

where xi ∈ [0, 1] and γ = 1000, D = 22, β1 = 2, β2 = 2. The parameter R takes the values: 0.935, 0.940, 0.945,
0.950, 0.955, 0.960, 0.965, 0.965, 0.970, 0.975, 0.980, 0.985, 0.990 and 0.995. The number of roots depends on the value of
parameter R and it varies from 1 to 7.

Steering problem
This is a kinematic synthesis problem for automotive steering described in [28–30] and it is described by the following

equations for i = 1, 2, 3

Gi (ψi, φi) = (Ei (x2 sin (ψi))− Fi (x2 sin (φi)− x3))2 + (Fi (1+ x2 cos (φi))− Ei (x2 cos (ψi)− 1))2

− ((1+ x2 cos (φi)) (x2 sin (ψi)− x3) x1 − (x2 sin (φi)− x3) (x2 cos (ψi)− x3) x1)2

with

Ei = x2 (cos (φi)− cos (φ0))− x2x3 (sin (φi)− sin (φ0))− (x2 sin (φi)− x3) x1

and

Fi = −x2 cos (ψi)− x2x3 sin (ψi)+ x2 cos (ψ0)+ x1x3 + (x3 − x1) x2 sin (ψ0)

and x ∈ [0.06, 1]3. The values for the angles φi and ψi are shown in Table 1. For these values of the angles the systems has
two roots.

Merlet problem
This problem was found in [30] and it is a system of two equations:

f1 (x1, x2) = − sin (x1) cos (x2)− 2 cos (x1) sin (x2)
f2 (x1, x2) = − cos (x1) sin (x2)− 2 sin (x1) cos (x2) (7)

with x ∈ [0, 2π ]2. The system has 13 roots in the specified domain.

Floudas problem
This problem is defined in [26] and it is given by the following equations:

f1 (x1, x2) = 0.5 sin (x1x2)− 0.25
x2
π
− 0.5x1

f2 (x1, x2) =
(
1−

0.25
π

)
(exp (2x1)− e)+ e

x2
π
− 2ex1 (8)

with x1 ∈ [0.25, 1] and x2 ∈ [1.5, 2π ]. The system has two roots in the given domain.

Yamamutra problem
The problem is considered in [32] and in [33] and it is defined by:

xi −
1
2n

(
n∑
j=1

x3j + i

)
= 0, i = 1, 2, . . . , n.
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Table 2
Results for the Effati–Grosan problem 1.

a ROOTS MS1 MS2 MS3 MINF

2 1 3659(0.03) 3659(0.03) 4009(0.04) 754(0.01)
10 13 8874(0.07) 5299(0.04) 19790(0.15) 5398(0.10)
100 127 125349(1.02) 72552(0.59) 164932(1.35) 106824(1.45)

Table 3
Results for the Effati–Grosan problem 2.

a ROOTS MS1 MS2 MS3 MINF

2 1 4026(0.03) 4026(0.03) 4849(0.04) 616(0.01)
10 1 5459(0.04) 5459(0.04) 6435(0.05) 715(0.01)
100 1 8361(0.06) 8361(0.06) 9837(0.07) 1135(0.01)

Table 4
Results for the reactor problem.

R ROOTS MS1 MS2 MS3 MINF

0.935 1 5445(0.04) 6494(0.05) 5864(0.05) 539(0.01)
0.940 1 5589(0.05) 6678(0.05) 5973(0.05) 570(0.01)
0.945 3 7817(0.06) 12502(0.10) 9469(0.08) 591(0.01)
0.950 5 7359(0.06) 8714(0.07) 9522(0.08) 2417(0.04)
0.955 5 5919(0.05) 7169(0.06) 8922(0.08) 1781(0.03)
0.960 7 5394(0.05) 5565(0.05) 11092(0.09) 2469(0.05)
0.965 5 5448(0.05) 18457(0.15) 8090(0.07) 1334(0.03)
0.970 5 5075(0.04) 12361(0.11) 7490(0.06) 1020(0.02)
0.975 5 4519(0.04) 6724(0.06) 6859(0.06) 1089(0.03)
0.980 5 4786(0.04) 9014(0.08) 7432(0.06) 1137(0.03)
0.985 5 5369(0.05) 7861(0.07) 6994(0.06) 1456(0.03)
0.990 1 4106(0.04) 4106(0.04) 4620(0.04) 357(0.01)
0.995 1 3863(0.03) 3863(0.03) 4718(0.04) 296(0.01)

Table 5
Results for problems Steering, Merlet and Floudas.

Problem ROOTS MS1 MS2 MS3 MINF

Steering 2 11941(0.44) 39758(1.62) 12886(0.47) 604(0.03)
Merlet 13 4605(0.05) 3297(0.03) 8033(0.08) 260(0.03)
Floudas 2 4273(0.03) 69627(0.53) 4273(0.03) 1259(0.02)

Bratu problem
The problem is considered in [34] and it is defined by:

xi−1 − 2xi + xi+1 + h2 exp (xi) = 0, i = 1, 2, . . . , n

where x0 = xn+1 = 0 and h = 1
n+1 .

3.2. Results

All the methods were run 30 times using different seeds for the random generator each time and averages were taken.
All the experiments were performed on a Intel core duo processor equipped with 2 GB ram running Ubuntu Linux 8.04. The
sample size for each method (parameter N in Algorithms 1 and 2) was set to 20 in all experiments. Results are presented
in Tables 2–5. In all tables the numbers in parentheses denote the average time required. The column ROOTS denotes the
average number of roots found, the column MS1 denotes the average number of function calls using the Multistart method
with Double-box termination check, the column MS2 denotes the average number of function calls using the Multistart
method with Observables termination check, the column MS3 denotes the average number of function calls using the
Multistart method with Expected minimizer stopping rule and the column MINF denotes the average number of function
calls for theMinfindermethod. The local searchmethod used in the experimentswas a BFGS variant due to Powell [31]. Both
Multistart and Minfinder have managed to find the same number of roots in all experiments, but they differ dramatically in
the number of function evaluations.
In Tables 2 and 3 the results from the application of Multistart and Minfinder to the problems Effati–Grosan problem 1

and problem 2 respectively are listed. The column a denotes the parameter a for the left and right bounds of variables x1, x2
i.e.−a ≤ xi ≤ a. BothMultistart andMinfindermanaged to find the samenumber of roots for the systemof equations,which
means that the same roots were found for the parameter a. As it can be seen from Tables 2 and 3 a 10%–80% gain in speed
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Table 6
Results for the Yamamura problem.

N ROOTS MS1 MS2 MS3 MINF

10 3 15752(0.36) 192644(4.47) 16220(0.37) 10022(0.25)
20 3 23234(1.46) 117262(7.27) 24049(1.51) 22721(1.48)
30 3 28251(3.53) 145679(17.89) 28796(3.61) 26865(3.44)
40 3 32583(6.89) 167246(37.55) 34466(7.29) 31161(6.71)

Table 7
Results for the Bratu problem.

N ROOTS MS1 MS2 MS3 MINF

10 2 13909(0.31) 97035(2.13) 13909(0.31) 6654(0.17)
20 2 24744(1.30) 25196(1.33) 25834(1.36) 15139(0.84)
30 2 37799(3.56) 145229(24.31) 36728(3.39) 23932(2.88)

has been achieved using the Minfinder optimization procedure relatively to Multistart. In contrast to the methodologies
founded in the literature that concentrated on locating one root, our method found multiple roots (for example 127 for the
first problem with a = 100) without a priori knowledge of the target number of roots. The roots discovered in [19] were
also included to the set of roots founded by our methods.
In Table 4 the results from the Reactor problem are reported. The column R denotes the value of parameter R in Eq. (6).

BothMultistart andMinfindermethodswere able to discover the same number of roots as in [21]without a priori knowledge
of the target number of roots. As it can be seen from Table 4 the speed gain from the application of Minfinder method was
ranged from 50% to 90% against Multistart.
In Table 5 the results from the application of the methods to the problems of Steering, Merlet and Floudas are listed. As

in previous cases, Multistart and Minfinder were able to discover the same number of roots as in [21]. Also, the application
of Minfinder had a significant gain in speed ranged from 75% to 90%.
In Tables 6 and 7 the results from the application of the proposedmethods to Yamamura and Bratu problemare listed. The

column N denotes the dimension of the objective function. Both Multistart and Minfinder managed to find all the solutions
of the objective problems.

4. Conclusions

The root finding problem has been successfully transformed to global optimization problem. General applied stochastic
global optimization methods have been utilized to locate the global minima of the transformed problem which correspond
to the roots of the systems of nonlinear equations. Results presented here from various test cases indicate that all real roots
can be found without a priori knowledge of the number of the roots. Efficiency of global optimization methods guarantee
the locating of all possible roots. It was found also that Minfinder resulted in considerable gain in speed relatively to the
classical Multistart method, although bothmethods showed the same efficiency. The generality of the appliedmethodology
allows its application to any system of nonlinear equations, since it does not depend on the problem formulation and does
not require a priori knowledge of the number of the existed roots.
Future improvements of the proposed method can be finding also complex roots of systems or application to systems of

complex nonlinear equations.
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